
Professor Mayur Naik

CIS 7000 - Fall 2024

The Transformer Architecture: Part II

Slides adapted in part from Stanford’s CS224N: Natural Language Processing with Deep Learning (Spring’24) 
and Chapters 9, 10, 11, 13 of Jurafsky/Martin’s book “Speech and Language Processing” (3rd ed). 



● Impact of Transformers

● From Recurrence (RNNs) to Attention-Based Models

● The Transformer Block

Recap Of Last Lecture



● The Overall Transformer Model

● Inference and Training

● State-of-the-Art Transformer Case Studies

● Drawbacks of Transformers

Today’s Agenda



The Transformer Architecture

Decoder

Encoder

Repeat 6x
(# of Layers)

Last lecture, we completed the 
Encoder.

This lecture we will look at the
Decoder...



Decoder: Masked Self-Attention

Problem: How do we keep the decoder from “cheating”? If we have a language modeling 
objective, can't the network just look ahead and "see" the answer?

Solution: Masked Multi-Head Attention.

At a high-level, we hide (mask) information
about future tokens from the model.

Transformer-Based  
Encoder-Decoder Model



Masking the Future in Self-Attention

To use self-attention in decoders, we need to ensure 
we can’t peek at the future.

At every timestep, we could change the set of keys 
and queries to include only past words. (Inefficient!)

To enable parallelization, we mask out attention to 
future words by setting attention scores to −∞.

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞

[START]

The

who

We can look at these (not 
greyed out) words

chef

[STA
RT]

The
who

ch
ef

For encoding
these words



Decoder: Masked Multi-Head Self-Attention

Feed Forward

Scaled Multi-Head
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)Add & Norm

Masked Multi-Head
Attention



Encoder-Decoder Attention

Feed Forward

Scaled Multi-Head
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)Add & Norm

Masked Multi-Head
Attention

Let h1, … , hN be output vectors from the encoder

Let z1, … , zN  be input vectors from the decoder

Then keys and values are drawn from
the encoder (like a memory):

ki = WK hi and vi = WV hi

whereas the queries are drawn from
the decoder:

qi = WQ zi

How does the decoder focus on appropriate places in the
input sequence? Using encoder-decoder / cross attention!

Add & Norm

Multi-Head
Cross Attention



Add a feed forward layer (with residual
connections and layer norm).

Decoder: Finishing Touches!

Feed Forward

Scaled Multi-Head
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)Add & Norm

Masked Multi-Head
Attention

Add & Norm

Multi-Head
Cross Attention

Feed Forward

Add & Norm



Add a feed forward layer (with residual
connections and layer norm).

Add a final linear layer to project the
embeddings into a much longer vector
of length vocab size (logits).

Decoder: Finishing Touches!

Feed Forward

Scaled Multi-Head
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)Add & Norm

Masked Multi-Head
Attention

Add & Norm

Multi-Head
Cross Attention

Feed Forward

Add & Norm

Linear



Add a feed forward layer (with residual
connections and layer norm).

Add a final linear layer to project the
embeddings into a much longer vector
of length vocab size (logits).

Add a final softmax to generate a
probability distribution of possible
next words!

Decoder: Finishing Touches!

Feed Forward

Scaled Multi-Head
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)Add & Norm

Masked Multi-Head
Attention

Add & Norm

Multi-Head
Cross Attention

Feed Forward

Add & Norm

Linear

Softmax



Differences in Attention Mechanism of RNN vs. Transformer

Feature RNN with Attention
(Bahdanau et al. 2015) Transformer

Attention Type Additive (Bahdanau) Attention Scaled Dot Product Attention

Alignment Based on decoder hidden state and 
encoder hidden states

Based on dot-product of query and keys 
(global attention)

Efficiency Processes sequences step-by-step Parallel processing of all positions

Context Weighted sum of encoder hidden 
states at each step

Attends to all encoder positions for every 
output

Self-Attention Not used Self-attention in both encoder and decoder



Terminology Note

A transformer used as a causal language model is 
called a decoder-only model (GPT is an example). 
This is because it constitutes roughly half of the 
encoder-decoder model for transformers.

The original introduction of the transformer [Vaswani 
et al. 2017] had an encoder-decoder architecture
(T5 is an example).  It was only later that the standard 
paradigm for causal language model was defined by 
using only the decoder part of this architecture.

Later, we will also see the paradigm of masked 
language model which uses an encoder-only model 
(BERT is an example).



Training and Inference



Transformer Training



Compare to RNN Training

In RNNs, the calculation of the outputs and the losses at each step is inherently serial due to the 
recurrence in the calculation of the hidden states. In transformers, each training item can be 
processed in parallel since the output for each element in the sequence is computed separately!



Recall Self-Attention Equation: 

We can’t do quite the same efficient computation in inference as in training. Why?

KV Cache

Because at inference time, we iteratively generate the next tokens one at a time!

It would be a waste of computation time to recompute the key and value vectors for all the prior 
tokens x<i since at prior steps we already computed these key and value vectors.

Idea: whenever we compute the key and value vectors, store them in memory in the KV cache.

Parts of the attention computation 
showing, in black, the vectors that can 
be cached rather than recomputed 
when computing the attention score 
for the 4th token.



Broadly two kinds of approaches:

Which Word to Generate at Each Step?

Deterministic Sampling-Based

Greedy

Beam Search

Random

Top-k Top-p

TemperatureMinimum Bayes 
Risk (MBR)



Which Word to Generate at Each Step?

Greedy decoding: Generate the most likely word given the context. That is, compute the probability 
for every word in the vocabulary and then choose the highest probability word:

A major problem: since the words chosen are (by definition) extremely predictable, the resulting 
text is generic and repetitive. Greedy decoding is so predictable that it is deterministic!

Sampling methods: Introduce more diversity into the generation by sampling from the model’s 
distribution over words. That is, sample to choose random words according to their probability 
assigned by the model.

=> We are more likely to generate words that the model thinks have a high probability in the context 
and less likely to generate words that the model thinks have a low probability.



Random sampling:

We next introduce sampling methods that
avoid generating the very unlikely words.

Each has parameters that enable trading
off two important factors in generation:
quality and diversity.

Sampling Methods

Doesn’t work well enough! Although it mostly generates sensible, 
high-probable words, there are many odd, low probability words in the tail 
of the distribution, and although each one is low probability, all the rare 
words comprise a large enough portion of the distribution that they get 
chosen often enough to result in generating weird sentences.

Methods that emphasize the most probable words tend to produce 
generations that are rated as more accurate, coherent, and factual, but 
also more boring and repetitive. Methods that give a bit more weight to 
the middle-probability words tend to be more creative and diverse, but 
less factual and more likely to be incoherent or low-quality.



Top-k Sampling

Simple generalization of greedy decoding: first truncate the distribution to the top k most likely 
words, renormalize to produce a legitimate probability distribution, and then randomly sample from 
within these k words according to their renormalized probabilities.

1. Choose in advance a number of words k.
2. For each word in the vocabulary V, use the model to compute the likelihood of this word given

the context p(wt | w<t).
3. Sort the words by their likelihood, and discard those not in the top k most probable words.
4. Renormalize the scores of the k words to be a legitimate probability distribution.
5. Randomly sample a word from within these remaining k most-probable words according to 

its probability.

k=1 => greedy decoding; k > 1 leads to sometimes select a word which is not necessarily the most 
probable, but is still probable enough, and whose choice results in generating more diverse but still 
high-enough-quality text.



Nucleus or Top-p Sampling

Problem with top-k sampling: k is fixed but the shape of the probability distribution over words 
differs in different contexts. If we set k = 10, sometimes the top 10 words will be very likely and 
include most of the probability mass, but other times the probability distribution will be flatter
and the top 10 words will only include a small part of the probability mass.

Nucleus or top-p sampling: keep not the top k words, but the top p percent of the probability mass.

Goal is the same: to truncate the distribution to remove the very unlikely words. But by measuring 
probability rather than the number of words, the measure is more robust in very different contexts, 
dynamically increasing and decreasing the pool of word candidates.

Given a distribution P(wt | w<t), the top-p vocabulary V(p) is the smallest set of words such that



Don’t truncate the distribution; instead reshape it. Intuition comes from thermodynamics, where a 
system at a high temperature is very flexible and can explore many possible states while a system 
at a lower temperature is likely to explore a subset of lower energy (better) states.

Implement this intuition by simply dividing the logit by a temperature parameter τ before 
normalizing it by passing it through the softmax: y = softmax(u)  ->  y = softmax(u/τ).

Low-temperature sampling: τ ∈ (0, 1]. Lower the τ, larger the scores passed to the softmax. 
Softmax tends to push high values toward 1 and low values toward 0. Thus, when larger numbers 
are passed to a softmax the result is a distribution with increased probabilities of the most 
high-probability words and decreased probabilities of the low probability words, making the 
distribution more greedy. As τ -> 0 the probability of the most likely word -> 1.

High-temperature sampling: τ > 1.  Useful in situations where we want to do something quite 
different and flatten the word probability distribution instead of making it greedy.

Temperature Sampling



Beam Search

Deterministic decoding method that extends greedy decoding and works well in tasks like machine 
translation, which are very constrained in that we generate a text in one language conditioned on a 
very specific text in another language.

Recall problem with greedy decoding:

What looks high probability at word t might turn out to have been the wrong choice once we get to 
word t + 1. Beam search maintains multiple choices until later when we can see which one is best.



Intuition Underlying Beam Search

Model decoding as searching the space of possible generations, represented as a search tree 
whose branches represent actions (generating a token), and nodes represent states (having 
generated a particular prefix). We search for the best action sequence, that is, the string with
the highest probability.

Example: Greedy search chooses yes 
followed by yes, instead of the 
globally most probable sequence ok 
ok.  Vocabulary is V = {yes, ok, EOS}.



Illustration of Beam Search Algorithm with Width k=2



Illustration of Beam Search Algorithm with Width k=2

At each step, extend each 
of the k best hypotheses 
incrementally by passing 
to distinct decoders.

Continue process until an 
EOS is generated, i.e. a 
complete candidate 
output has been found. 

Remove the completed 
hypothesis from the 
frontier and reduce the 
size of the beam by 1.

Continue the search until 
the beam has been 
reduced to 0. The result 
will be k hypotheses.



Problem With Beam Search

Spread of Probability Mass:

Minimum Bayes Risk (MBR) decoding to the rescue: instead of trying to choose the translation 
which is most probable, choose the one that is likely have the least error.



Minimum Bayes Risk (MBR)

Given a set of possible candidate translations Y, and some similarity or alignment function util, 
choose the best translation y as the one most similar to all the other candidate translations:

Various util functions can be used, like chrF or BERTscore or BLEU. We can get the set of candidate 
translations by sampling using one of the basic sampling algorithms. Good results can be obtained 
with as few as 32 or 64 candidates.

Tends to work better than beam search and other decoding algorithms like temperature sampling. 
Widely used in machine translation and other generation tasks (e.g. summarization, dialogue, etc.).

ˆ

B. Eikema and W. Aziz. Is MAP Decoding All You Need? The Inadequacy of the Mode in Neural Machine 
Translation. COLING 2020.

https://arxiv.org/abs/2005.10283
https://arxiv.org/abs/2005.10283


State-of-the-Art Transformer Case Studies



BERT: Bidirectional Encoder Representations from Transformers

Introduced by Google in 2018, it learned 
embeddings of text for use in downstream 
tasks. It’s major changes are:

● Segment embeddings in addition
to token embeddings and position 
embeddings. All are learned!

● Encoder-only instead of 
encoder-decoder

● Bidirectional instead of unidirectional
● Two simultaneous loss functions with 

masked language modeling and next 
sentence prediction



Masked Language Modeling

First, sample 15% of tokens in a sample.

Replace token with:

● [MASK] ~ 80%
● Random word token ~ 10%
● Not replaced ~ 10%

Pass sentence through the encoder and 
try to predict [MASK] with a simple linear 
layer + softmax!



Next Sentence Prediction

Try to determine if one sentence follows 
another with simple binary classification.
All embedding are learned!  (unlike original 
Transformer).

Later works found this to not be useful …



Llama Family

Autoregressive LLM first released by Meta in 
Feb 2023. (Several generations since then.) 
Changes include:

● Decoder-only instead of encoder-decoder
● SwiGLU activation instead of GeLU
● Rotary positional embeddings instead of 

absolute positional embeddings
● RMSNorm instead of LayerNorm



 RMS Normalization

In LayerNorm, we re-center (subtracting from mean) and re-scale (divide by std. deviation)
across (sequence length, embedding_dim) dimensions.

Zhang et al. propose that only re-scaling matters. This saves a small amount of compute
by not needed to re-center.

LayerNorm

RMSNorm

Linear Layer



Swish-Gated Linear Unit (SwiGLU)

Swish(x) = sigmoid(β*x), β is hyperparam

GLU(x) = x*sigmoid(Wx+b); W,b is learned

SwiGLU(x) = x * sigmoid(β * x) + 
                     (1 - sigmoid(β * x)) * (Wx + b)

Smoother than ReLU, non-monotonic, allows 
gating = higher performance!



Rotary Position Embedding (RoPE)

So far, we have seen two kinds of position embeddings: Sinusoidal [Vaswani et al. 2017] and 
learned (BERT). Where do they fall short?

Instead of adding extra numbers, RoPE rotates embeddings based on their position so that the 
relative position of tokens can be considered in the attention calculations rather than their 
absolute positions. The angles between embedding vectors maintain the same proportional 
relationship as the distance between tokens in the sequence.



Drawbacks of Transformers



What would we like to fix about the Transformer?

Quadratic compute in self-attention (today):

Computing all pairs of interactions means our computation grows quadratically with the 
sequence length!

For recurrent models, it only grew linearly!

Position representations:

Are simple absolute indices the best we can do to represent position?

Alternatives: Relative linear position attention [Shaw et al., 2018],  Dependency syntax-based 
position [Wang et al., 2019], Rotary Embeddings [Su et al., 2021]



Work on Improving on Quadratic Self-Attention Cost

● Much recent work has gone into the question, Can we build models like Transformers 
without paying the 𝑂(N2) all-pairs self-attention cost?

● For example, Linformer [Wang et al., 2020]

Key idea: map the sequence length dimension to a lower-dimensional space for values, keys.



Work on Improving on Quadratic Self-Attention Cost

● Much recent work has gone into the question, Can we build models like Transformers 
without paying the 𝑂(N2) all-pairs self-attention cost?

● For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local windows, 
looking at everything, and random interactions.



Up Next …

Sept 23 Lecture: Guest speaker Yann Dubois, Ph.D. Candidate, Stanford University.

Topic: LLM Benchmarking and Evaluation

Sept 25 Lecture: Guest speaker Hanjun Dai, Staff Research Scientist & Research 
Manager, Google Brain

Topic: RLHF and LLM Reward Modeling

https://yanndubs.github.io/
https://hanjun-dai.github.io/

